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Abstract—In this paper we present a hardware and software
framework for Neural Scanning of household objects using
Neural Radiance Fields (NeRF). NeRF learn a probabilistic
representation of radiance and density, thus they can be used to
render objects and to export objects’ geometry. Our framework
allows for easy scanning of the objects by rotating the object
while using cameras in a static position. The objects we scan
are mostly taken from the Yale-CMU-Berkeley (YCB) object
set, and we release our scans as part of a public dataset.
Supplementary URL: https://robocip-aist.github.
io/ycb_nerf_scans.

I. INTRODUCTION

In recent years, the Neural Radiance Fields (NeRF) tech-
nique has shown state of the art results on rendering 3D
volumes [1]. Neural radiance fields represent a volume as a
function that maps position and viewing direction to radiance
(RGB) and density. Recent research has directly applied
NeRF for 6-degrees-of-freedom (6DOF) object localization
and manipulation with a robot arm [2, 3]. NeRF can also
be combined with classical meshing techniques such as
Marching Cubes in order to generate 3D meshes [4]. The
main challenge for using NeRF for Neural Scanning is that
NeRF assumes the camera is moved around the scene, while
in our case, in order to allow for easy scanning, we want to
rotate the object without moving the cameras.

In this paper we discuss a hardware framework, a software
framework and a scanning process for creating Neural Scans
of household objects, mostly originating from the YCB
Object Set [5, 6]. We release our datasets and source code
as open source software to facilitate future research.

II. BACKGROUND

Spatial representations of objects are useful for various
tasks, including robot manipulation. There are various types
of spatial representation, including 3D point clouds and
meshes. However, in this paper we focus on representing
objects as a neural volume. Neural volumes are a view
synthesis technique, allowing for the creation of views of
an object from positions and angles that were not originally
captured. The rendering quality of neural volumes is typically
higher compared to techniques that require an intermediate
representation such as a point cloud or mesh, because novel
views are directly synthesized from previous views.
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NeRF [1] is a view synthesis technique that models the
problem as learning a function that maps position and view-
ing direction to radiance and density, significantly improving
qualitatively and quantitatively upon previous state of the art
works such as Scene Representation Networks (SRN) [7],
Neural Volumes (NV) [8] and Local Light Field Fusion
(LLFF) [9]. Commonly used quantitative methods to measure
image generation quality are Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [10]
and Learned Perceptual Image Patch Similarity (LPIPS) [11].

Some studies directly use neural volumes to estimate the
6DOF position of objects in real scenes or keypoints for
manipulation [2]. One of the limitations of the original
implementation of NeRF is the long training times required,
often taking hours to days to train, but recently many research
results have enabled near instantaneous training and render-
ing [12]. Neural volume techniques have also been applied
before to directly obtain a 3D mesh of objects found “in the
wild”, however the result of these studies are still of low
geometry and texture quality [13]. While NeRF generates
high quality renderings of objects, mesh generation can be
optimized by using neural signed distance functions [14].

Other works directly use an RGBD sensor to produce
a textured mesh of objects [15, 16, 17]. Such methods
can produce fairly good results, however suffer from the
limitations of RGBD sensors, such as noisy depth estimates
and low spatial resolution. Other works have focused on
creating object datasets using neural rendering techniques,
such as Common Objects in 3D (CO3D) [18]. Unlike CO3D,
our work uses a hardware framework that can be used to
collect input images without manually moving around the
object. In addition, our work reuses the YCB object set [6],
which advantage is that it can be purchased and used directly
in robotics experiments.

Because our cameras are simple DSLR cameras, we con-
sider this rig to be a passive scanning system, in contrast
to active scanning systems that use visible or invisible
light projection, such as the Google Scanner [19], RGBD
sensor based scanning [15, 16, 17] and various commercial
scanners. The main benefit of using passive scanning is that
the system is simpler to reproduce. Compared to commercial
scanners, our system allows more control over the scanning
process, but the system comes at a similar cost and produces
lower quality geometry than current commercial alternatives.

A closely related technique to NeRF is photogrammetry,
which is also a passive method for constructing a virtual rep-
resentation of a scene. Indeed, the photogrammetry process
and NeRF share the same first step, to estimate the camera
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Overview of our neural scanning framework. Data collection column shows our physical setup and an example of data collected of the YCB log.

Data preprocessing column shows the result of intrinsic and extrinsic camera calibration using the YCB log and the result of running our mask generation
tool. Training column shows the Neural Rendering of the combination of masks, original photos, camera alignment and shows the rendered views from
the perspective of the training cameras. Exporting column shows a novel view of the neural scan, visualization of the surface normals (geometry), and a

textured mesh exported through the neural scanning process.

intrinsics and extrinsics using multi-view geometry [20]. The
main benefit of our Neural Scanning framework compared
photogrammetry is the speed at which we can collect object
geometry, with photogrammetry this takes minutes to hours,
while our neural scanner can produce decent geometry within
seconds.

III. METHOD

Our neural scanning framework consists of a hardware
framework, a software framework and a scanning process.
Our hardware framework consists of a five-camera hemi-
spherical camera rig, a motorized rotation table, studio lights
and background cloths and curtains. Our software frame-
work consists of picture preprocessing scripts and integra-
tion scripts with NVIDIA Instant neural graphics primitives
(instant-ngp) [12] for rendering and exporting 3D meshes.
Fig. 1 gives an overview of our neural scanning framework.
Our scanning process consists of four phases:

1) Data collection: Automated collection of hemispheric
photographs.

2) Data preprocessing: COLMAP dense reconstruction
and mask generation.

3) Training: Neural rendering and training using instant-
ngp.

4) Exporting: Exporting a mesh using marching cubes.

A. Data collection

In the data collection phase, we collect high resolution
color images of the object that is being scanned. Objects
are placed on a rotation table (Ortery PhotoScan 360) with
an extension pole attached to the center. We use five cam-
eras (CANON EOS 90D) pointed towards the object in a
90 degree vertical arc, regularly spaced (using Ortery 3D
MultiArm 2000). Objects are lit from the front and the back
side using Ortery LiveStudio lights. We use Ortery Capture to
control the cameras, rotation table and lights. Our hardware
setup is similar to BigBIRD, except that we only use DSLR
cameras, without depth sensors [5].

B. Data preprocessing

In the data preprocessing phase, we generate masks for
the collected images and assign the camera position to
each image. Masks are generated by manually selecting a
rough region of interest for each camera in which the object
is located and selecting a binary threshold value on the
grayscale version of the images for filtering out background
(black) pixels. The above process causes holes to appear in
the masks for areas on the scanned objects with black texture
patches, to remove these holes we apply contour selection
for non-convex objects, and convex hull for convex objects.
COLMAP is used for determining the camera position per
image [21, 22]. For objects in which COLMAP alignment
fails (e.g. due to lack of features on the object or repetitive
patterns), we reuse camera positions previously determined
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using a calibration object (an object that does not exhibit any
problematic aspects, we typically use the YCB log for this).
In our experience, using camera alignments from COLMAP
is more accurate than using explicit camera alignments
generated from an AR marker.

C. Training

In the training phase, we train a fully fused multi-layer
perceptron (MLP) [23] to render views of the neural volume
based on the predetermined camera positions. Depending on
the object, some fine tuning is performed by also training
the camera intrinsics and extrinsics. We use instant-ngp for
training and previewing the neural scan [12]. We have added
some modifications to instant-ngp, such as adding keys for
stepping through each training camera and exporting training
camera positions and rotations for animation, these changes
have been merged with the project'.

lour fork: https://github.com/FlorisE/instant-ngp.
Main project: https://github.com/NVlabs/instant-ngp.

D. Exporting

In the exporting phase, we export the trained weights of the
MLP and export a mesh of the object. The marching cubes
algorithm is used for generating the mesh geometry [4]. The
radiance of the neural rendering is sampled for texturing the
mesh, however the mesh texture quality is lower than the
neural rendering quality, as the mesh texture is not directly
sampled from training views. In future works we will explore
how to improve the texture quality of exported meshes.

IV. RESULTS AND DISCUSSION

In this section we show qualitative results of using Neural
Scanning. First, we show the result of scanning various items
from the YCB object set. Second we show the results of
neural scanning on a small set of objects of types commonly
found in Japan. For each dataset we show the neural ren-
dering and mesh geometry of the objects, as well as some
specific data from each dataset.

We tested our neural scanner using the following NVIDIA
GPU’s: RTX 3060Ti, RTX 3090, RTX A5000. GPU memory
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requirements depend on the resolution of the input images.
RTX 3060Ti is equipped with 8GB of GPU memory, which
is the least of the GPU’s tested. It was possible to load 100
images with W x H of 1920 x 1080 on the RTX 3060Ti.

A. YCB Object Set Neural Scans

In Table I we show some examples of neural scans of
objects from the YCB set, in comparison with the original
YCB models. We aimed to test neural scanning on a variety
of objects from the YCB set. In addition to the neural
rendering and mesh geometry of the objects, we show the
mesh rendering and mesh geometry of the scans (Poisson
version) in the original YCB dataset using Meshlab [24].
Even though we used the official YCB object set, some
items do not have the exact same appearance compared to
the original scans. Each rendering was trained on 80 images
(20 rotation steps, 4 cameras) for 5000 training steps>. More
objects can be found in the supplemental material.

Our Neural Scanner can easily scan objects that exhibit
Lambertian reflectance such as the coffee can and Soft Scrub.
In some cases, our Neural Scanner produces better looking
results than contained in the YCB model set, for example in
the case of Soft Scrub, where part of the cap is missing in
the YCB model, whereas our method succeeds in capturing
this part, or Windex, in which our method produces more
geometry for transparent areas.

Our method has some problems with specular reflectance,
as is demonstrated by Bowl, Cheezit, Hammer and Windex.
For Bowl, the geometry determined has some noise. For
Cheezit, Hammer and Windex, specular reflectance is re-
produced when rendering the neural scan. In a traditional
photogrammetry setup, polarization properties of light would
be used to remove specular reflectance. In our setup it is
not possible to apply polarization to every camera as we
have only two light sources and take pictures simultaneously.
Applying a polarizing filter to only a single camera would
lead to the lighting to be significantly different between this
camera and the other cameras, causing a sudden change
in lighting conditions between different perspectives of the
neural rendering. Instead, algorithms such as a Joint Bilateral
Filter could be used to reduce specular reflectance, however
we leave the further exploration of this to future work.

The neural scan of Windex is much more complete than
the original YCB model, even though the transparent ge-
ometry has noise. It should be noted that we scanned the
emptied spray bottle, whereas the original YCB model was
scanned with liquid in the bottle. One might wonder how
the transparency is colored, so we have included a separate
rendering of Windex with the rendering background set to
white, see Fig. 2.

For dark objects, the main problem is separating areas of
the object from the black background color. In case of the

2We did not use the fifth camera beyond data collection, as it was hard
to estimate its position. The object rotates in a plane parallel to the camera
and the camera depth axis is similar to the rotation axis, which is a case in
which multi-view stereo algorithms, used to determine the camera extrinsic
parameters, often break down.

Fig. 2. Windex rendering and geometry with white rendering background
(and black scanning background) shows how scanning background color is
assigned to transparent surfaces.

drill, our mask generation tool was unable to create masks
to separate the drill from the background due to the object
having black parts. To compensate for this, we scanned the
drill using a white background instead. Due to the lack
of active lighting, our Neural Scanner seems susceptible to
the same kinds of visual issues as other passive scanning
techniques such as photogrammetry are, e.g. transparency,
reflectiveness, dark and textureless areas.

B. Japanese Household Objects Neural Scans

In Table I we show some examples of neural scans of a
small set of objects that can be found in Japanese offices and
homes, and in Table III we calculate the Hausdorff distance
bidirectionally between the meshes. We compare the results
captured using our Neural Scanner — Ours (Rendering) and
Ours (Geometry), a recent RGBD-sensor-based scanner [17]
— Previous (P) — and a commercial 3D scanner — Artec
Space Spider (GT). Note that the Sparkling Lemon bottle
was spray painted to ensure it was scannable, without spray
paint none of the scanners could obtain accurate geometry.
In the direction from G7T, Ours has the lowest error, but
in the direction to GT, Previous actually got a lower error.
This is caused by some geometry being present inside Ours,
whereas Previous and GT are hollow meshes. In addition
to the neural rendering and mesh geometry of the objects,
we show the colored mesh of the objects obtained using
Previous, and mesh rendering and mesh geometry from the
commercial 3D scanner. As can be seen from Table II, our
neural scanner is clearly superior to Previous, while being
slightly inferior to the commercial 3D scanner. Previous
produced a mushroom effect on objects such as Cup Noodle,
which our new system does not suffer from. In the case of
the mug, Ours (Geometry) includes some extra particles on
the inside of mug, which seems to originate from a lack of
texture details (the mug is white from inside). Previous had
a lot of issues with the mug due to the thinness of the walls
of the mug, as well as the thinness of the ear. Previous also
had trouble with shiny, textureless surfaces, such as Tissues,
whereas our new system can handle this object well.

One benefit of Previous was the total cost of the system,
only requiring a rotation table, a commercial-of-the-shelf
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TABLE III
QUANTITATIVE COMPARISON ON OBJECTS THAT WE HAVE SCANNED IN
A PREVIOUS WORK. MEAN ERROR IN CM.

Label GT—Ours GT—P  Ours—GT P—GT
CupNoodle 0.11 0.25 0.83 0.19
Mug 0.16 0.47 0.75 0.52
SparklingLemon 0.07 0.34 0.59 0.23
Tissues 0.14 0.49 1.15 0.25

RGBD sensor and optionally a photo studio box. The total
cost of the Neural Scanner presented in this paper is multiple
times this cost, as in addition to the turntable used in
Previous, we use five DSLR cameras, a mechanical structure
for attaching the cameras, a camera multiplexer and studio
lighting setup.

Another limitation of the neural scanner is that the mesh
texture quality is not very high, as could be seen in the
bottom right mesh rendering in Fig 1. While this is a
significant limitation when the goal is to create an output
mesh, this does not limit the usage of Neural Radiance Fields
for viewing objects or even for manipulation [2, 3]. In this
paper we have used the rendering by instant-ngp for Ours
(Rendering), as this is the common mode in which we expect
neural scans to be used. Improving the texture quality of
exported meshes is left as a future work.

V. CONCLUSIONS

In this paper we have shown that photographs captured
using a setup consisting of DSLR cameras, a rotation table
and studio lighting setup can be used to collect the training
dataset for generating neural radiance fields. The neural
radiance fields can subsequently be used to achieve high
quality scanning of objects, almost rivalling commercial
active 3D scanning technologies. In the future we want to
improve our scanning system and results by combining high
resolution camera images and depth maps captured using an
additional depth sensor. We also want to further explore how
to scan objects that exhibit problematic aspects, such as lack
of texture, reflection/transparency, etc.
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